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1. Introduction

One of the most interesting subjects in string theory has been the conjectured equivalence

between string theory on AdS5 ×S5 and an N = 4 SU(N) super Yang-Mills theory [1]–[4].

Though many aspects of this proposed correspondence remain a mystery, we can make

much progress by restricting attention to certain sectors, such as operators with large R-

charge in the CFT, which on the gravity side of the duality correspond to strings in a plane

wave background [5]. In these sectors it is particularly easy to see how a closed string arises

as a chain of “bits,” dual to a gauge invariant single-trace operator.

We have also come to understand that there is a rich structure of integrability on both

sides of the correspondence. On the CFT side, Minahan and Zarembo showed that the

1-loop anomalous dimension matrix for single trace scalar operators can be diagonalized

using Bethe ansatz techniques [6]; this work was further extended to the full CFT and

higher loops in subsequent papers [7]–[11]. The resulting spectrum has been successfully

matched to energies of corresponding semiclassical string states [12]. Meanwhile, on the

AdS side, it has been shown[13] that the string sigma model on AdS5 × S5 possesses an

infinite number of Yangian symmetries, suggesting the possibility that the theory might
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in fact be exactly solvable. Work to demonstrate the integrability of the AdS string has

continued in [14]–[18], and relations between the integrable structures on both sides have

been proposed [19]. More recent work on integrability and AdS/CFT includes [20]–[36].

Integrability has also been studied in deformations that add fundamental matter into

the CFT, which correspond to open strings living on a D-brane in AdS [37]–[39]. These

deformations have been further related to semiclassical open spinning strings [40]–[42].

In this note we consider another nice example of integrability in the open string sector:

we consider a probe D7-brane filling all of the AdS, which adds a single N = 2 chiral

hypermultiplet of fundamental matter to the CFT [43]–[47]. We compute the one loop

anomalous dimension matrix and compute its spectrum using Bethe ansatz techniques.

This system is particularly natural since the fundamental matter is free to propagate in

all four dimensions, thus we avoid some subtleties of the defect in ref. [38] while at the

same time working with a system that more closely resembles QCD. The D7-brane system

is also further away from pure N = 4 SYM in the sense that the conformal symmetry is

broken except in the strict large N limit, where the D7 brane acts as a probe on the AdS.

Interestingly, one loop integrability is preserved. Furthermore, we can use this system to

study more carefully techniques relating open spin chains to closed spin chains [41] and how

these techniques relate to a traditional string “doubling trick”. The analysis of this system

has similarities to the work with the defect CFT of ref. [38]; both allow for operators

corresponding to open spin chains whose boundaries break the SO(6) R-symmetry down

to a subgroup.

We begin in section 1 with a field theoretic determination of the one-loop anomalous

dimension matrix, and demonstrate that it vanishes when acting on our chiral primary

operators. In Section 2 we then determine the integrable spin chain with the same sym-

metries as our operators, and demonstrate that our anomalous dimension matrix is one of

the complete set of commuting operators for this system. Having demonstrated that our

anomalous dimension matrix can be diagonalized using a a Bethe ansatz, we then find the

Bethe ansatz in section 3, by studying spin chains with single impurities. Our analysis

in this section confirms many of the features discovered in the previous paper using the

dCFT. [38]

In section 4, we move forward with both the open spin chains in the N = 2 system

studied in the previous sections, and the open spin chains in the dCFT studied in [38].

In [41], it was shown that Bethe ansaetze for open spin chains can be directly related

to closed spin chain Bethe ansaetze by a version of the “doubling trick.” We apply this

method to our open spin chains, and using the AdS/CFT correspondence, we then find

the related open and closed strings. Our relationships between open strings and closed

strings have two interesting features that go beyond a simple doubling trick. We find that

the relation differs from the expected doubling trick by terms of order O1/J , where J

is the total angular momentum of the string, or even by terms of order O(1). This first

type of correction is obscured in semiclassical analyses, and reflects the effect of boundary

conditions on the energy of an open string. The second reflects the care that needs to be

taken in correctly identifying the appropriate closed string to relate to the open string. In

this case we will find open strings that do not satisfy E − J = O(λ/J2), but are related
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by “doubling” to closed strings that do. Conclusions and open questions are discussed in

section 5, and an appendix includes field theory conventions.

2. The anomalous dimension matrix

2.1 The N = 2 action

The field theory we study here is a variation of N = 4, SU(N) SYM in which we add one

N = 2 hypermultiplet of fundamental matter. This breaks the supersymmetry down to

N = 2, and breaks the R-symmetry from SO(6) = SU(4) to SO(4) × SO(2) = SU(2)L ×
SU(2)R × U(1). In addition, the conformal symmetry is anomalous at finite N , though it

is restored in the strict large N limit where we will be studying the theory. The content of

this theory is then the content of the N = 4 theory (6 real scalars, 4 Weyl fermions, and

one gauge boson, all in the adjoint of the gauge group), and a hypermultiplet of matter

(an SU(2) doublet of complex scalars and two Weyl fermions, in the fundamental of the

gauge group) [45]. The pure N = 4 action

SN=4 =

∫
d4xTr

{
−1

4
FµνFµν − iψAσµDµψ̄A − 1

2
DµφiDµφi (2.1)

+gφψACAB
i ψB + gφiψ̄

AC̄i
ABψ̄B +

g2

4
[φi, φj ]

2

}
,

where the CAB
i are Clebsch-Gordon matrices translating between the 4 and 6 representa-

tions of the R-symmetry group SU(4), is supplemented by the additional terms

Sfund =

∫
d4x

{
− (DµQa)†DµQa − iχ̄σ̄µDµχ − iπσµDµπ̄ (2.2)

−ig
√

2πZχ + ig
√

2χ̄Z̄π̄ − g2

2
(Q̄aQ

b)(Q̄bQ
a) − g2εabε

cd(Q̄cQ
b)(Q̄dQ

a)

+ig
√

2Q̄aΛ̄
aπ̄ − ig

√
2πΛaQ

a + ig
√

2Q̄aε
abΛbχ − ig

√
2χ̄Λ̄aεabQ

b

− g2Q̄aφiφiQ
a + g2Q̄bφ

IW̄Iac̄W
c̄b
J φJQa

}
.

Here, Q is an SU(2)R doublet of complex fundamental scalars, π and χ are fundamental

fermions, Z is a complex combination of two real adjoint scalars (charged under the U(1)),

Λ is the doublet of adjoint fermions that transform under SU(2)R, and W āb
I are Clebsch-

Gordon matrices that translate between the (1/2,1/2) of SU(2)L × SU(2)R and the 4 of

SO(4). In the appendix there are tables summarizing the charges of all fields, as well as

full explanations of our field theory conventions.
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2.2 Feynman diagram calculations

We would like to find the anomalous dimension matrix for scalar operators of the type

O = Q̄a1
φi1 · · ·φiLQa2 . (2.3)

To one loop, and in the strict large N limit, this limits us to “nearest neighbor” interactions.

Interactions between two φi fields are identical to those encountered in one-loop anomalous

dimension matrices in N = 4 SYM because terms involving fundamental matter will always

be suppressed by orders of 1/N . Boundary interactions between one fundamental and one

adjoint scalar should, at this order, always yield one fundamental and one adjoint scalar.

Thus, we expect these operators only to mix among themselves. The matrix should act on

a Hilbert space

C
2 × R

6 × · · · × R
6

︸ ︷︷ ︸
L copies

×C
2 (2.4)

and consist of “nearest neighbor interactions”. The interior terms should be exactly the

usual N = 4 SYM 1-loop anomalous dimension terms, and these should be supplemented

by operators giving interactions between the boundary C
2s and the R

6s next to them.

The anomalous dimension matrix is calculated using the usual Feynman diagram ap-

proach [6]. We find that if the operator is renormalized to be

OA
ren = ZA

BOB (2.5)

so that correlation functions with this operator are finite, then the anomalous dimension

matrix is

Γ =
dZ

d ln Λ
· Z−1, (2.6)

where Λ is the UV cutoff. We thus want to calculate the correlation function

〈Qa1φI1 · · ·φILQ̄a2
O〉 (2.7)

at one loop, which will involve corrections to each of the fields’ propagators as well as

nearest-neighbor type terms between two adjacent scalar fields.

In addition to the normal types of fields we have in N = 4,

= φ = ψ = Aµ,

there are three fundamental field types

= Q = χ = π.

We start out with the usual N = 4 diagrams. First we have the one-loop correction to

the adjoint scalar propagator.
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+ + =

Note that the two diagrams involving quartic interactions don’t directly contribute to

the anomalous dimension; they help cancel quadratic divergences in the other diagrams

whose presence would indicate a dynamically generated mass term. If we considered con-

tributions away from the strict large-N limit, we would also have diagrams here involving

the fundamental matter; these would not have canceling quadratic divergences, and thus

would indicate an anomaly in the conformal symmetry.

We also have the exchange of a gluon, and a four-scalar interaction among four adjoint

scalars

+ .

These were calculated in [6].

From the two ends of the operator we have the one-loop corrections to the fundamental

scalar

+ +

+ + +

= .

(Again, the quartic terms don’t directly contribute to the anomalous dimension) as

well as a gluon exchange between a fundamental and an adjoint scalar, and a four-scalar

interaction between two fundamentals and two adjoints.

+ .

After calculating these Feynman diagrams, we find that the anomalous dimension
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matrix is

Γ =
g2N

16π2

[
R1 − 2I + R̄L − 2I +

L−1∑

n=1

(2Pn,n+1 − 2In,n+1 − Kn,n+1)

]
(2.8)

where the operators acting on the interior of the spin chain are defined, as usual, to be

(Pn,n+1)
b1,j1,...,jL,a2

a1,i1,...,iL,b2
= δb1

a1
δj1
i1
· · · δjn−1

i1
(δjn

in+1
δ
jn+1

in
)δ

jn+2

in+2
· · · δjL

iL
δa2

b2

(In,n+1)
b1,j1,...,jL,a2

a1,i1,...,iL,b2
= δb1

a1
δj1
i1
· · · δjn−1

i1
(δjn

in
δ
jn+1

in+1
)δ

jn+2

in+2
· · · δjL

iL
δa2

b2

(Kn,n+1)
b1,j1,...,jL,a2

a1,i1,...,iL,b2
= δb1

a1
δj1
i1
· · · δjn−1

i1
(δjn,jn+1δin,in+1

)δ
jn+2

in+2
· · · δjL

iL
δa2

b2
. (2.9)

The operators that act on the ends of the spin chain are defined as

(R1)
b1,j1,...,jL,a2

a1,i1,...,iL,b2
= (δi1,Iδ

j1,JW̄Ja1c̄W
c̄b1
I )δj2

i2
· · · δjL

iL
δa2

b2

(R̄L)b1,j1,...,jL,a2

a1,i1,...,iL,b2
= δj1

i1
· · · δjL−1

iL−1
(δiL,Iδ

jL,JW̄Ib2c̄W
c̄a2

J ). (2.10)

Note that the nearest neighbor terms from the interior of the operator are identical to

those calculated in [6].

2.3 The chiral primary operators

As a check on our anomalous dimension matrix, we find a chiral primary operator of this

type, and show that it has vanishing anomalous dimension (at least to one-loop). We know

that in N = 4 SYM, operators of the type Tr(φi + iφj)
L for i 6= j are CPOs- they have

maximal charge under one generator of SO(6). Equivalently, we want to look for operators

of our type with maximal charge. Of course, since the fields Qa and Q̄a are uncharged

under the SO(2) = U(1), we need to restrict ourselves to adjoint fields charged under the

SO(4). For example, suppose we look for an operator with maximal charge under rotations

in the 1 − 2 plane, so that φ1 + iφ2 obtains a positive charge +1. The SO(6) matrix for

which this vector has eigenvalue +1 is

T = −i




0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (2.11)

The corresponding generator for the 4 of SU(4) can be found by contracting the matrix T i
j

with the Clebsch-Gordan matrices CAB
i :

1

4
T i

jCiC̄
j =

1

2




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 . (2.12)
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Now, this matrix shows that Λ1 would have charge −1/2 and Λ2 would have charge 1/2,

while Θ1 would have charge 1/2 and Θ2 would have charge −1/2. Since Q̄ is in the same

representation of the same SU(2) as Λ, this tells us that Q̄2 has charge 1/2 under this

rotation. If we transform the SU(2) generator σ3 into the generator acting on an anti-

fundamental object, we find that Q1 also has charge 1/2. Thus, our CPO with maximal

charge under this rotation should be

Q̄2(φ1 + iφ2)
LQ1, (2.13)

and of course there are infinitely more such CPOs. Now, consider our anomalous dimension

matrix acting on the operator O = Q̄2(φ1 + iφ2)
LQ1. We know that each term acting on

the interior of the operator 2Pn,n+1 − 2In,n+1 − Kn,n+1 vanishes independently, just as it

does for the single trace operator of N = 4 SYM. The terms R1 − 2I and R̄L − 2I also

each vanish independently:

(R1 − 2I)O = W̄J2c̄(W1 + iW2)
c̄b1Q̄b1φJ(φ1 + iφ2)

L−1Q1 − 2Q̄2(φ1 + iφ2)
LQ1

= −2W̄J21Q̄2φJ(φ1 + iφ2)
L−1Q1 − 2Q̄2(φ1 + iφ2)

LQ1

= 2Q̄2(φ1 + iφ2)
LQ1 − 2Q̄2(φ1 + iφ2)

LQ1

= 0 (2.14)

and

(R̄L − 2I)O = (W̄1 + iW̄2)b2c̄W
c̄1
J Q̄2(φ1 + iφ2)

L−1φJQb2 − 2Q̄2(φ1 + iφ2)
LQ1

= −2W 21
J Q̄2(φ1 + iφ2)

L−1φJQ1 − 2Q̄2(φ1 + iφ2)
LQ1

= 2Q̄2(φ1 + iφ2)
LQ1 − 2Q̄2(φ1 + iφ2)

LQ1

= 0. (2.15)

Thus, our anomalous dimension matrix does vanish when acting on our CPOs, just as it

should. From now on we will make the definitions

X = φ1 + iφ2, Y = φ3 + iφ4. (2.16)

We will use the operator Q̄2X
LQ1 as a reference operator, and study impurities of the

types Y , Ȳ , and Z = φ5 + iφ6 in it. Note that if we write the charges associated with

X, Y , Z for an operator as (J1, J2, J3), this reference operator has charges (L + 1, 1, 0),

because the fundamental matter is charged under two SO(2) subgroups.

3. The boundary Yang-Baxter equation

We would now like to determine whether or not the anomalous dimension matrix calcu-

lated above is one of an infinite number of commuting operators in an integrable system.

These calculations follow closely the procedure used in [38], but are spelled out here for

convenience.
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� �

Figure 1: The R12(u) matrix (equation (3.1)), represented graphically.

� � � � � ��

�

� � �

�

� � �

�

Figure 2: The Yang-Baxter equation (3.2), graphically.

For closed spin chains, Minahan and Zarembo showed in [6] that operators composed

of closed chains of adjoint scalar fields do have this structure. They did this by identifying

an SO(6) invariant R-matrix

R12(u) =
1

2
[u(u − 2)I12 − (u − 2)P12 + uK12] , (3.1)

where 1 and 2 label the two vector spaces (spin chain sites) that the operator acts on,

and I, P , and K are as defined in equation (2.9). These matrices satisfy the Yang-Baxter

equation

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u). (3.2)

We can express this graphically. In figure 1 we show the graphical representation of the

R12(u) matrix, and in figure 2 we show the graphical representation of the Yang-Baxter

equation.

We can then define the transfer matrix as the trace of the monodromy matrix,

t(u) = TraTa(u) ≡ TraRa1(u)Ra2(u) · · · RaL(u), (3.3)

where a labels an auxiliary vector space of the same type as the sites in the spin chain.

Thus, the monodromy matrix acts on the vector space Va × V1 × · · · × VL for a spin chain

of length L, and the transfer matrix acts on the Hilbert space of the spin chain. If the

R-matrix satisfies the Yang-Baxter equation (3.2), then the transfer matrices satisfy the

relation

[t(u), t(v)] = 0, (3.4)

and thus we can expand t(u) in u to get a complete set of mutually commuting operators

and the spin chain is integrable. If one of these operators is interpreted as a Hamiltonian,

– 8 –
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� � � �� � � �� � �

Figure 3: The transfer matrix t(u) defined in equation (3.3), graphically. The stars are meant to

be identified with each other to represent the trace.

�

�

	

	


 
� ��  � �  �� �

� � � � � �

Figure 4: The commutation of two transfer matrices, graphically. Equation (3.4).

the others then represent more conserved charges. We show the transfer matrix in figure 3

and this commutation relation in figure 4.

The single-trace one-loop anomalous dimension matrix can be written as a linear com-

bination of the conserved charges, so it is integrable.

Now, the analogous method for studying spin chains with boundaries was formulated in

[48], and was applied to the anomalous dimensions of operators in a superconformal field

theory with fundamental matter in [38]. The technique is to introduce matrices K±
a (u)

acting on either end of the spin chain in addition to the R12(u) matrices. In our case,

these matrices will act on a vector space

R
6 × C

2, (3.5)

though the action on the boundary C
2 will be suppressed in the following equations. The

subscript a in K±
a (u) labels the copy of R

6 that it acts on. These satisfy the boundary

Yang-Baxter equations (BYBs)

R(u − v)K−
1 (u)R12(u + v)K−

2 (v) = K−
2 (v)R12(u + v)K−

1 (u)R12(u − v) (3.6)

R12(v − u)K+t1
1 (u)R12(−u−v−2iγ)K+t2

2 (v) =K+t2
2 R12(−u − v − 2iγ)K+t1

1 (u)R12(v − u)

where ti is a transpose on the ith vector space, and γ is a parameter defined by the relation

Rt1
12(u)Rt1

12(−u − 2iγ) = λ(u) (3.7)

for λ(u) a scalar function. For our case we have γ = 2i. In figure 5 we show a graphi-

cal representation of the K−-matrix, and in figure 6 we show the graphical BYB that it

– 9 –
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Figure 5: The K−(u)-matrix, graphically.

Figure 6: A graphical representation of the BYB, equation (3.6).

obeys (the representations of the K+ are similar). Now, we can define a new “transfer”

matrix

t̂(u) = TraK+
a (u)Ta(u)K−

a (u)T−1
a (u) (3.8)

that will act on the Hilbert space we are trying to study. If both (3.2) and (3.6) are sat-

isfied, then these are the continuous set of mutually commuting operators needed for an

integrable system:

[t̂(u), t̂(v)] = 0. (3.9)

The new transfer matrix is shown in figure 7, and the new commutation relation is shown

in figure 8.

We need to find a matrix K−
a (u) that satisfies equation (3.6) and preserves the sym-

metry group SO(2) × SO(4). Again following the techniques of [38], we make the ansatz

(K−)bJaI (u) = f(u)δb
aδ

J
I + g(u)W̄ J

ac̄W
c̄b
I

(K−)bYaX(u) = h(u)δb
aδ

Y
X

(K−)bYaI (u) = 0

(K−)bJaX(u) = 0, (3.10)

– 10 –
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Figure 7: The new transfer matrix t̂(u) equation (3.8), represented graphically.
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�

�

Figure 8: The new transfer matrices commute with each other (equation (3.9)).

remembering that X,Y are indices in the SO(2) and I, J are indices in the SO(4). This

is the most general ansatz we can make, using the group theory structure we have. The

BYB, written in index form, has four external SO(6) indices i1, i2, `1, `2, and each index

can be either in the SO(2) or in the SO(4). It also has two external SU(2) indices from

acting on the boundary degrees of freedom.

Rj1j2
i1i2

(u − v)(K−)bk1

aj1
(u)R`1k2

k1j2
(u + v)(K−)c`2bk2

(v) =

= (K−)bj2ai2
(v)Rj1k2

i1j2
(u + v)(K−)ck1

bj1
(u)R`1`2

k1k2
(u − v) (3.11)

Each case should be considered separately, and may give conditions that the functions

f(u), g(u), and h(u) need to satisfy.

For the eight cases where one index is in the SO(2) and the other three are in the

SO(4), or vice-versa, both sides of the equation vanish and we get no conditions. The case

with all external SO(6) indices in the SO(2) is satisfied automatically, as is the case where

i1 and `1 are in the SO(2) and i2 and `2 in the SO(4), or the opposite case where i2 and

`2 are in the SO(2) and i1 and `1 are in the SO(4).

The cases where i1, `2 ∈ SO(2), i2, `1 ∈ SO(4) or the opposite i2, `1 ∈ SO(2), i1, `2 ∈
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SO(4) each give us the equations

(u + v)(f(u)h(v) − f(v)h(u)) = (u − v)(4g(u)g(v) − f(v)f(u) − h(u)h(v) (3.12)

and

(u + v)(g(u)h(v) − g(v)h(u)) = (u − v)(g(v)f(u) + g(u)f(v)). (3.13)

The cases where `1, `2 ∈ SO(2), i1, i2 ∈ SO(4) or the opposite i1, i2 ∈ SO(2), `1, `2 ∈
SO(4) each give us the equations

(u2 − v2)(u − v − 2)(h(v)g(u) + h(u)g(v)) + (u + v)(u − v − 2)(h(v)g(u) − h(u)g(v))

+(u2−v2)(u+v−2)(f(u)g(v)−f(v)g(u))−(u−v)(u+v − 2)(f(v)g(u) + f(u)g(v))

+2(u + v)(u2 − v2)g(v)g(u) + 4(u2 − v2)f(u)g(v) + 2(u2 − v2)h(u)g(v) = 0

(3.14)

and

((u2 − v2)(u − v) − (u + v)(u − v − 2))(h(v)f(u) − f(v)h(u))

+2(u2 − v2)(u − v)h(v)g(u) (3.15)

+2(u2 − v2)h(v)f(u) − 2(u2 − v2)(u + v)f(v)g(u)

+4(u − v)(u + v + 1)(u + v − 2)g(u)g(v)

+(u − v)((u + v)2 − (u + v − 2))h(u)h(v)

+(u − v)((u + v − 2) − (u + v)(u + v + 2))f(v)f(u) = 0.

Finally, the case with all external SO(6) indices in the SO(4) gives us the two equations

(u + v)(f(v)g(u) − f(u)g(v)) − (u − v)(f(v)g(u) + f(u)g(v))

−2(u2 − v2)g(u)g(v) = 0 (3.16)

and

((u2 − v2)(u − v − 2) − (u − v)(u + v − 2))

×(f(v)g(u) + f(u)g(v)) + 4(u2 − v2)f(u)g(v) (3.17)

((u + v)(u − v − 2) − (u2 − v2)(u + v − 2))

×(f(v)g(u) − f(u)g(v)) + 2(u2 − v2)h(u)g(v)

+2(u2 − v2)(u2 − v2 − 2u + 2)g(u)g(v) = 0.

These equations determine the functions h(u), f(u), g(u) (up to normalization) to be

h(u) = 1 − u2

g(u) = −u

f(u) = 1 + u2. (3.18)
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This means that we have

(K−)bJaI (u) = (1 + u2)δb
aδ

J
I − uW̄ J

acW
cb
I

(K−)bYaX(u) = (1 − u2)δb
aδ

Y
X

(K−)bYaI (u) = 0

(K−)bJaX(u) = 0. (3.19)

In addition, it can be shown that if K−
a (u) satisfies its BYB, then K+

a (u) = K−ta
a (2−u)

satisfies the other BYB, so that we have

(K+)bJaI (u) = (5 − 4u + u2)δb
aδ

J
I + (u − 2)W̄IacW

Jcb

(K+)bYaX (u) = (−3 + 4u − u2)δb
aδ

Y
X

(K+)bYaI (u) = 0

(K+)bJaX (u) = 0. (3.20)

Now, if we formed a transfer matrix t̂(u) from these two operators, each of the ends

would act on the same representation of SU(2). However, our operators have one end in

the fundamental, and one in the anti-fundamental. Therefore, we create

(K̃−)aj
bi = εac(K−)djciεdb (3.21)

(which must also satisfy the BYB) and we use this object in the creation of our transfer

matrix:

(K̃−)aJ
bI (u) = (1 + u2)δa

b δJ
I − uW̄ J

bcW
ca
I

(K̃−)aY
bX(u) = (1 − u2)δa

b δY
X

(K̃−)bYaI (u) = 0

(K̃−)bJaX(u) = 0. (3.22)

Using these objects, we can now expand our transfer matrix, and we find that

t̂0 = t̂(0) = 6I (3.23)

and

t̂1 =
dt̂

du
(0) = −7I − 6R1 − 6RL − 6

L−2∑

n=1

(2Pnn+1 + Inn+1 − Knn+1) (3.24)

where R1 and RL are as defined in (2.10). Thus, we find that the anomalous dimension

matrix from the previous section can, indeed, be written as a linear combination of these

operators

Λ =
g2N

16π2

[−1

6
t̂1 −

1

6

(
13

6
+ 3L

)
t̂0

]
(3.25)

and thus that the eigenvalues of this matrix can be found using a Bethe ansatz.
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4. The Bethe ansatz

Having demonstrated that our spin chain is integrable, we now want to find the eigenstates

and eigenvalues of the anomalous dimension matrix, using the Bethe ansatz. The basic

idea is to start with a reference state of maximal charge under one SO(2) subgroup of

SO(4)×SO(2), and then change the charges of some of the fields in the operators, creating

“impurities.” These impurities form spin waves that have momenta quantized by the Bethe

ansatz

eipiL =
∏

j 6=i

Sji(pj , pi) (4.1)

where pi label the momenta of the spin waves, and Sij(pi, pj) is the S-matrix for the

scattering of two spin waves. The general formula for the Bethe ansatz for a spin chain

with sites in a given representation of a given Lie algebra is [6]

(
uq,i + i~αq · ~w/2

uq,i − i~αq · ~w/2

)L

=

nq∏

j 6=i

uq,i − uq,j + i~αq · ~αq/2

uq,i − uq,j − i~αq · ~αq/2

∏

q′ 6=q

nq′∏

j

uq,i − uq′,j + i~αq · ~αq′/2

uq,i − uq′,j − i~αq · ~αq′/2
.(4.2)

Here the uq,i are parameters characterizing excitations, taking the place of the pi; i labels

the excitation as before, while q reflects the fact that the excitation can be associated to any

of the simple roots ~αq of the algebra. ~w is the highest weight vector of the representation

of the group that lives at each site. For a fundamental at each site, we will have ~w = ~w1,

the first fundamental weight, which has the inner product with simple roots ~αq · ~w1 = δ1
q .

Note that the relationship between the spin wave momentum k and the new parameter

u is [6]

p(u1,i) = −i log
u1,i + i/2

u1,i − i/2
. (4.3)

In this paper we restrict ourselves to operators with a reference state of maximal charge

under one SO(2), with spin waves all of the same definite charge under another SO(2). In

this case the Bethe ansatz for the closed spin chain simplifies to [12]

(
uj + i/2

uj − i/2

)L

=

J∏

k 6=j

uj − uk + i

uj − uk − i
, (4.4)

and the spin-wave S-matrix is

Skj(pk, pj) =
uj − uk + i

uj − uk − i
. (4.5)

We know that the generalization of this Bethe ansatz for open spin chains should be

e2ipiL = B1(pi)B2(pi)
∏

j 6=i

(Sji(pj, pi)Sji(−pj, pi)) (4.6)

where the B1,2 are possible phases that a spin wave could obtain from reflecting off the

boundary.
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As was pointed out in [38], since we already know the S-matrix from the closed spin

chains, all we need to determine are the factors B1,2. Furthermore, these can be found

by considering states of only a single impurity, since only one impurity interacts with the

boundary at a time.

4.1 The Bethe reference state

We begin with our reference state, which is

Q̄2X
LQ1. (4.7)

If we say that J1, J2, and J3 are charges under rotations of the three SO(2) subgroups

corresponding to X, Y , and Z, then this state has charges

(J1, J2, J3) = (L + 1, 1, 0). (4.8)

This is somewhat unusual for a Bethe reference state, which is usually constructed to have

charge under only one SO(2); however, it is (as we discussed earlier) the operator of this

type with maximal charge J1, and it does have vanishing anomalous dimension.

4.2 Single impurities of type Z or Z̄

We now to consider operators where one of the X fields in the reference state is replaced

with a Z field spin wave, creating operators of charge

(J1, J2, J3) = (L, 1, 1). (4.9)

(Operators with a Z̄ impurity act identically). The operators in this sector are of the form

|Z(x)〉 = Q̄2X
x−1ZXL−xQ1, (4.10)

and we take a standard Bethe ansatz linear combination of these

|Z(p)〉 =

L∑

x=1

(A(p)eipx + Ãe−ipx)|Z(x)〉 (4.11)

to be our proposed eigenstate. Using our operator (2.8), we find that

Γ|Z(x)〉 = −λ [2|Z(x − 1)〉 + 2|Z(x + 1)〉 − 4|Z(x)〉] (x 6= 1, L)

Γ|Z(1)〉 = λ [4|Z(1)〉 − 2|Z(2)〉]
Γ|Z(L − 1)〉 = λ [4|Z(L)〉 − 2|Z(L − 1)〉] . (4.12)

We then use this to calculate

Γ|Z(p)〉 = 4λ(1 − cos p)

L−1∑

x=2

(A(p)eipx + Ã(p)e−ipx)|Z(x)〉

+λ
(
A(p)eip(4 − 2eip) + Ã(p)e−ip(4 − 2e−ip)

)
|Z(1)〉

+λ
(
A(p)eipL(4 − 2e−ip) + Ã(p)e−ipL(4 − 2eip)

)
|Z(L)〉. (4.13)
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Notice that for the terms of |Z(p)〉 with x = 2, ..., L − 1, we already have what we want,

so that 4λ(1 − cos p) must be the eigenvalue of |Z(p)〉 under operator Γ. In order for the

operator to be an eigenstate, we then demand that

4(1 − cos p)(A(p)eip + Ã(p)e−ip) = (4 − 2eip)A(p)eip + (4 − 2e−ip)Ã(p)e−ip, (4.14)

which gives

A(p) = −Ã(p) (4.15)

and

4(1 − cos p)(A(p)eipL + Ã(p)e−ipL) = (4 − 2e−ip)A(p)eipL + (4 − 2eip)Ã(p)e−ipL, (4.16)

which (together with the above result) gives

e2ip(L+1) = 1. (4.17)

This is then our Bethe equation for a single impurity of this type. Notice that the Z

impurity “sees” a spin chain of effective length L + 1, and that the boundary terms are

trivial:

B1,2 = 1. (4.18)

In total, we write that the spin wave momentum is quantized as

p =
πn

L + 1
, n ∈ Z, (4.19)

the eigenstate is written as

|Z(p)〉 =

L∑

x=1

sin
πnx

L + 1
|Z(x) (4.20)

(so that the spin wave does, indeed, obey “Dirichlet boundary conditions,” as one would

expect of an impurity that corresponds to a direction perpendicular to the 7-brane), and

the anomalous dimension of this operator is given by

Γ|Z(p)〉 = 4λ

(
1 − cos

πn

L + 1

)
|Z(p)〉. (4.21)

4.3 Impurities of type Y

Next we consider states with a single impurity of type Y , so that the states have charge

(J1, J2, J3) = (L, 2, 0). (4.22)

Notice that even though these impurities are charged under the SO(4) under which the

boundary terms are charged, this sector does not contain any operators where the boundary

fields are “flipped,” for example, operators like Q̄1XXX · · · . Therefore, the calculations

here are very similar to the previous ones. We label the operators in this sector

|Y (x)〉 = Q̄2X
x−1Y XL−xQ1 (4.23)
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and look for an eigenstate of the form

|Y (p)〉 =
L∑

x=1

(B(p)eipx + B̃(p)e−ipx)|Y (x)〉. (4.24)

We quickly find that

Γ|Y (x)〉 = λ [4|Y (x)〉 − 2|Y (x − 1)〉 − 2|Y (x + 1)〉] , x 6= 1, L

Γ|Y (1)〉 = λ [2|Y (1)〉 − 2|Y (2)〉]
Γ|Y (L)〉 = λ [2|Y (L)〉 − 2|Y (L − 1)〉] , (4.25)

and this leads to the equation

Γ|Y (p)〉 = 4λ(1 − cos p)

L−1∑

x=2

(B(p)eipx + B̃e−ipx)|Y (x)〉

+λ
(
(2 − 2eip)B(p)eip + (2 − 2e−ip)B̃(p)e−ip

)
|Y (1)〉

+λ
(
(2 − 2e−ip)B(p)eipL + (2 − 2ip)B̃(p)e−ipL

)
|Y (L)〉. (4.26)

From here, we can see that the eigenvalue of this state must be 4λ(1− cos p), and in order

for the state to be an eigenstate we need to have

4(1 − cos p)(B(p)eip + B̃(p)e−ip) = (2 − 2eip)B(p)eip + (2 − 2e−ip)B̃(p)e−ip, (4.27)

which gives us

B̃(p) = eipB(p) (4.28)

and

4(1 − cos p)(B(p)eipL + B̃(p)e−ipL) = (2 − 2e−ip)B(p)eipL + (2 − 2e−ip)B̃(p)e−ipL, (4.29)

which (together with the previous result) gives us

e2ipL = 1. (4.30)

Thus, again we have that

B1,2 = 1. (4.31)

This type of impurity apparently “sees” a spin chain of length L, and the momentum of

the spin wave is quantized as

p =
nπ

L
. (4.32)

The eigenstates are

|Y (p)〉 =
L∑

x=1

cos
nπ(x − 1/2)

L
|Y (x)〉 (4.33)

(and here the spin wave obeys “Neumann boundary conditions,” just as it should), and

their eigenvalues are

Γ|Y (p)〉 = 4λ
(
1 − cos

nπ

L

)
|Y (k)〉. (4.34)
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4.4 Impurities of type Ȳ

Finally, we consider eigenstates in the sector with charges

(J1, J2, J3) = (L, 0, 0). (4.35)

This sector contains operators of the type

|Ȳ (x)〉 = Q̄2X
x−1Ȳ XL−xQ1, (4.36)

but it also contains the operators

|Q̄1〉 = Q̄1X
LQ1, |Q2〉 = Q̄2X

LQ2. (4.37)

Thus, our proposed eigenstates will have the form

|Ȳ (p)〉 = D(p)|Q̄1〉 + E(p)|Q2〉 +

L∑

x=1

(C(p)eipx + C̃(p)e−ipx)|Ȳ (x)〉. (4.38)

We find that

Γ|Ȳ (x)〉 = λ
[
4|Ȳ (x)〉 − 2|Ȳ (x − 1)〉 − 2|Ȳ (x + 1)〉

]
, x 6= 1, L

Γ|Ȳ (1)〉 = λ
[
4|Ȳ (1)〉 + 2|Q̄1〉 − 2|Ȳ (2)〉

]

Γ|Ȳ (L)〉 = λ
[
4|Ȳ (L)〉 − 2|Q2〉 − 2|Ȳ (L − 1)〉

]

Γ|Q̄1〉 = λ
[
2|Q̄1〉 + 2|Ȳ (1)〉

]

Γ|Q2〉 = λ
[
2|Q2〉 − 2|Ȳ (L)〉

]
, (4.39)

which gives us

Γ|Ȳ (p)〉 = 4λ(1 − cos p)

L−1∑

x=2

(C(p)eipx + C̃(p)e−ipx)|Ȳ (x)〉

+λ
[
(4 − 2eip)C(p)eip + (4 − e−ip)C̃(p)e−ip + 2D(p)

]
|Ȳ (1)〉

+λ
[
(4 − 2e−ip)C(p)eipL + (4 − eip)C̃(p)e−ipL − 2E(p)

]
|Ȳ (L)〉

+λ
[
2C(p)eip + 2C̃(p)e−ip + 2D(p)

]
|Q̄1〉

+λ
[
−2C(p)eipL − 2C̃(p)e−ipL + 2E(p)

]
|Q2〉. (4.40)

From the first term, we see that the eigenvalue will again be 4λ(1 − cos p), and to ensure

that the state is an eigenstate we then need that

4(1− cos p)(C(p)eip + C̃(p)e−ip) = (4−2eip)eipC(p)+(4−2e−ip)e−ipC̃(p)+2D(p), (4.41)

which gives

D(p) = −C(p) − C̃(p) (4.42)
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and

4(1 − cos p)(C(p)eipL + C̃(p)e−ipL) = (4 − 2e−ip)C(p)eipL + (4 − 2eip)C̃(p)e−ipL − 2E(p),

(4.43)

which gives

E(p) = C(p)eip(L+1) + C̃(p)e−ip(L+1). (4.44)

(Note that the boundary terms are now acting like extra sites in the spin chain.) We also

need

4(1 − cos p)D(p) = 2C(p)eip + 2C̃(p)e−ip + 2D(p), (4.45)

which, together with the previous result, yields

C̃(p) = eipC(p) (4.46)

and

4(1 − cos p)E(p) = 2E(p) − 2C(p)eipL − 2C̃(p)e−ipL. (4.47)

This, together with the previous results, yields

e2ip(L+2) = 1, (4.48)

which is our spin-wave momentum quantization condition for this type of impurity. Again,

we have seen that the boundary interaction is trivial:

B1,2 = 1. (4.49)

Our spin wave momentum is now quantized according to

p =
nπ

L + 2
(4.50)

because this type of impurity “sees” an effective length of L + 2. With the definitions

|Ȳ (0)〉 ≡ −|Q̄1〉, |Ȳ (L + 1)〉 ≡ |Q2〉, (4.51)

our eigenstates are

|Ȳ (p)〉 =

L+1∑

x=0

cos
nπ(x + 1/2)

L + 2
|Ȳ (x)〉 (4.52)

(again with Neumann boundary conditions for the spin waves), and their eigenvalues are

Γ|Ȳ (p)〉 = 4λ

(
1 − cos

nπ

L + 2

)
|Ȳ (p)〉. (4.53)

There are three results in this section that we would like to highlight. First, notice that

for all three types of impurities, the spin waves reflect trivially off the boundary. This is

consistent with the results of [38]. It is probable that any open spin chains in a CFT whose

boundary terms are fundamental matter created by the insertion of a simple D-brane into

the AdS5×S5 background will behave like this. These types of open spin chains are related
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to closed spin chains by simple “doubling tricks,” just as the open strings are related to the

closed strings. It would be interesting to know whether any kind of fundamental matter

can lead to nontrivial reflection terms and, if so, what kind of string theory solution they

correspond to.

Second, the spin waves that should correspond to motion of the open string parallel to

the D-brane satisfy Neumann boundary conditions, while those that correspond to motion

perpendicular to the D-brane satisfy Dirichlet boundary conditions. Again, this reinforces

the previous results of [38] as further evidence of the AdS/CFT correspondence.

Finally, consider the effective lengths of the spin chains, as seen from the quantiza-

tion conditions of the spin-wave momenta. In [38], where the R-symmetry was broken to

SO(3)V × SO(3)H with the boundary terms charged under SO(3)H , DeWolfe and Mann

showed that impurities charged under the SO(3)V “saw” an effective length of one unit

less than the effective length experienced by SO(3)H impurities. The authors argued that

this was because the impurities in SO(3)H could interact with the boundaries, which then,

together, acted like an extra site in the spin chain. Here, the story is clearly more com-

plicated. We have Z or Z̄ impurities experiencing effective length L + 1, Y impurities

experiencing effective length L, and Ȳ impurities experiencing effective length L + 2. This

effective length matters when we consider the use of equation (4.6) in connection with the

“doubling trick,” in the next section.

5. Application of the “doubling trick” and relation to spinning strings

In [41], Chen, Wang, and Wu showed that open spin chains could be directly related to

closed spin chains, and, similarly, open spinning strings could be related to closed spinning

strings. These two relations then were shown to imply that if the closed spin chains and

closed spinning strings satisfied the AdS/CFT correspondence, so did the open spin chains

and open spinning strings. Here, we apply these arguments to the particular open spin

chains being studied in this paper.

Consider first an open spin chain with a large number of impurities of type Z (or Z̄).

This spin chain will have charges

(J1, J2, J3) = (j1 + 1, 1, j3) (5.1)

where j1 and j3 are the number of X and Z fields in the interior of the operator. This spin

chain has roots that satisfy the equation

(
uj + i/2

uj − i/2

)2(1+j1+j3)

=

j3∏

k 6=j

uj − uk + i

uj − uk − i

uj + uk + i

uj + uk − i
(5.2)

and has anomalous dimension

γo(j1 + 1, 1, j3) =

j3∑

j

4λ(1 − cos p(uj)) ≈
j3∑

j

2λp(uj)
2. (5.3)
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However, equation (5.2) can be directly related to the equation for a closed spin chain of

length 2(1 + j1 + j3) + 1 with 2j3 symmetrically distributed roots 1

(
uj + i/2

uj − i/2

)2(1+j1+j3)+1

=

2j3∏

k 6=j

uj − uk + i

uj − uk − i
. (5.4)

Thus we can relate the two anomalous dimensions as

γo(j1 + 1, 1, j3) =
1

2
γ
sym
c (2j1 + 3, 0, 2j3). (5.5)

Notice that the related closed spin chain carries no evidence of the J2 charge carried

by the open chain; this is an effect that disappears in the thermodynamic limit, but should

still somehow be explained on the string side eventually, through D-brane effects. We can

write this relationship in terms of the actual dimension of the operators, which can then be

related to the energies of open and closed strings, at least to lowest order in λ/J2. Doing

so gives us

∆o(j1 + 1, 1, j3) =
1

2
∆c(2j1 + 3, 0, 2j3) +

1

2
(5.6)

and then

Eo(j1 + 1, 1, j3) =
1

2
Ec(2j1 + 3, 0, 2j3) +

1

2
. (5.7)

This gives results that will differ from those in [41] by terms of order 1/Ji, which vanish

in the semi-classical limit.

By similar logic, we can work out the relation between open spin chains with Y impu-

rities and a closed spin chain to be

γo(j1 + 1, j2 + 1, 0) =
1

2
γc(2j1 + 1, 2j2, 0) (5.8)

which gives the relationship between energies of open and closed strings

Eo(j1 + 1, j2 + 1, 0) =
1

2
Ec(2j1 + 1, 2j2, 0) +

3

2
. (5.9)

We can do the same for the open spin chain with Ȳ impurities and we find the rela-

tionship

γo(j1 + 1, 1 − j2, 0) =
1

2
γ
sym
c (5 + 2j1,−2j2, 0). (5.10)

which gives

Eo(j1 + 1, 1 − j2, 0) =
1

2
Ec(5 + 2j1,−2j2, 0) −

1

2
. (5.11)

This is a more interesting result than those above, because it differs from the expected

doubling relation by terms of order 1, rather than of order 1/Ji. This is due to the fact

that the impurities carry opposite R-charge from the fundamental matter on the ends of

the spin chain. The closed spin chain that we relate to the open spin chain does not really

incorporate the Y R-charge from the fundamental matter at the ends of the spin chain, so

it is a simpler object.

1This equation includes a small correction to equation (24) in reference [41].
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Finally, for comparison, we can carry this procedure out on the spin chains studied in

[38], where the fundamental matter is in a dCFT. Using impurities that do not interact with

the boundaries, (analogous to our Z impurities), we would find the anomalous dimension

relation

γdCFT
o (1 + j1, 0, j3) =

1

2
γ
sym
c (2j1 + 1, 0, 2j3). (5.12)

and the energy relation

EdCFT
o (1 + j1, 0, j3) =

1

2
+

1

2
Ec(2j1 + 1, 0, 2j3) (5.13)

which again differs from the expected result by a term of order 1/Ji.

Notice that in all these cases, the anomalous dimension of the open spin chain is

directly related to the anomalous dimension of a closed spin chain. However, the associated

closed spin chain is simpler than the open spin chain. The closed spin chain is determined

completely by the impurity spin waves and the effective length that these spin waves “see”.

However, this does not capture the full charge structure of the open spin chain, and so

some information is lost in the relationship. Specifically, the closed spin chain is relatively

unaffected by the details of the ends of the open spin chain, even when the length of the

spin chain is small.

6. Conclusions and open questions

In this paper we have found one more supersymmetric gauge theory with fundamental

scalar matter that has one-loop integrability. We solved the Bethe ansatz and determined

the spectrum, confirming that reflections of spin waves off the ends of the spin chain

correspond directly to boundary conditions of an open string stuck to a D7-brane. We also

used a “doubling trick” to relate open spin chain excitations with anomalous dimension γo

to closed spin chain excitations with anomalous dimension 2γo.

However, we found that this doubling trick exhibited unexpected results. The charges

of the closed spin chain were not just “double” that of the associated open spin chain. This

is because the closed spin chain is not sensitive to all of the details of the boundaries of the

open spin chain, even when the spin chain is short. The boundary terms interact differently

with different types of impurities, but some of this information is lost when relating the

open spin chain to the closed spin chain. After applying the AdS/CFT correspondence

to this, we found an implied relationship between the energies of open and closed strings,

but because of the above issues, this relationship differed from the expected doubling trick

in all cases by terms of order O(1/J), and in one case by a term of order O(1). The

terms of order O(1/J) represent finite size effects that clearly vanish in the semiclassical

approximations that have been studied. The term of order O(1) arises because the closed

string state associated with the open string state is not the obvious one. This suggests that

care needs to be exercised in using the doubling trick for open strings and closed strings in

the AdS5×S5, so that the appropriate states are identified.

This work suggests that the boundary conditions of open strings can give corrections

to the λ/J2 term in the energies of these open strings of order 1/J , (that is, there is a
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field SO(4) = SU(2)L × SU(2)R SO(2) = U(1) SU(N) SO(3, 1)

φI fundamental of neutral adjoint scalars

SO(4) I = 1, ...4

Z = φ5 + iφ6 neutral +1 charge adjoint complex

under U(1) scalars

Λα
a a = 1, 2, (0, 1/2) +1/2 charge adjoint Weyl spinors,

of SU(2)L × SU(2)R under U(1) α = 1, 2

Θα
ā ā = 1, 2, (1/2, 0) −1/2 charge adjoint Weyl spinors,

of SU(2)L × SU(2)R under U(1) α = 1, 2

Aµ neutral neutral adjoint vector,

µ = 0, ..., 3

Qa a = 1, 2, (0,−1/2) neutral fundamental complex

of SU(2)L × SU(2)R scalars

χα neutral −1/2 charge fundamental Weyl spinors,

under U(1) α = 1, 2

πα neutral −1/2 charge anti- Weyl spinors,

under U(1) fundamental α = 1, 2

Table 1: A table of the fields in our N = 2 theory, with their representations under the global

symmetry groups, the gauge symmetry group, and the Lorentz symmetry group. Gauge indices are

suppressed.

correction to the energy of the string of order λ/J3). Very little work has been done to

separate the quantum corrections to open strings from pure finite size corrections. It would

be interesting to develop techniques to study these types of corrections, in order to verify

the relations we found here using the Bethe ansatz techniques. It would also be useful to

construct the open string related to our Ȳ -impurity spin chain, and see if we can reproduce

the O(1) discrepancy in the doubling trick, and better understand it from the string side.
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A. Field theory conventions and details

The matter of the theory and its representation under the R-symmetry are summarized in

table 1 [45], with the N = 4 information presented for comparison in table 2.

The CAB
i are Clebsch-Gordan matrices that translate between the 4 and the 6 repre-

sentation of SU(4). They are as follows:
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field SO(6) = SU(4) SU(N) SO(3, 1)

φi fundamental of adjoint scalars

SO(6) i = 1, ..., 6

ψα
A fundamental of adjoint Weyl spinors,

SU(4) A = 1, ..., 4 α = 1, 2

Aµ neutral adjoint vector,

µ = 0, ..., 3

Table 2: For reference, a table of the fields in the N = 4 theory, with their representations under

the various symmetry groups.

C1 =




0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


 , C2 =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 (A.1)

C3 =




0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


 , C4 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0




C5 =




0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0


 , C6 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 .

And the C̄i
AB are the Hermitian conjugates of these. The W āb

I translate between the

4 and the (1/2, 1/2) of SO(4), and are as follows:

W1 =

(
0 −1

−1 0

)
, W2 =

(
0 i

−i 0

)
(A.2)

W3 =

(
1 0

0 −1

)
, W4 =

(
i 0

0 i

)
.

And the W̄ I
ab̄

are the Hermitian conjugates of these. In addition, the covariant deriva-

tive is defined as

Dµ = ∂µ + igAµ (A.3)

and the field strength as

Fµν = DµAν − DνAµ. (A.4)

Spinor notation follows the conventions of Wess and Bagger.
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